ORGANIC LETTERS

2004 Vol. 6, No. 3 369-372

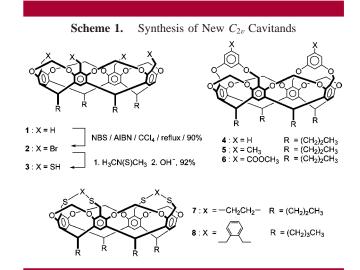
Small Cavitands Specifically Binding a Water Molecule

Chaesang Ihm,† Youngyong In,† Youngja Park,‡ and Kyungsoo Paek*,†

CAMDRC and Department of Chemistry, Soongsil University, Seoul 156-743, Korea, and Department of Chemistry, Sookmyung Women's University, Seoul 140-742, Korea kpaek@ssu.ac.kr

Received November 11, 2003

ABSTRAC1



Three new $C_{2\nu}$ cavitands based on resorcin[4]arene bind water specifically at low temperature in CD_2CI_2 or $CDCI_3$ due to their complementarity to water as well as the solvophobic interaction. The averaged ΔH° and ΔS° values are -2.3 kcal mol $^{-1}$ and -128 cal mol $^{-1}$ K $^{-1}$, which gave the averaged $-\Delta G^\circ$ of 1.9 kcal mol $^{-1}$ at -50 °C in water saturated CD_2CI_2 .

The specific guest complexation by synthetic hosts has been a goal of molecular recognition studies. Various container hosts for small guest molecules such as MeOH, EtOH, CH₃-CN, CH₃NO₂, CH₃CN, and CH₃CHO have been reported. 1,2 Water is one of the most ubiquitous and most important molecules for biological systems. Recently, crystal structures of tetrameric3 and octameric4 water clusters have been observed in solid states. In solution, water adopts threedimensional hydrogen-bonded networks according to temperature or pressure.⁵ A host selectively binding a water in solution would enable the study of structure and properties of a single water molecule, but it is very difficult to separate a single water molecule from the bulk solution due to its small size and strong hydrogen bonds. Herein, we report on the synthesis and water-specific binding property of new $C_{2\nu}$ cavitands at low temperature.

New $C_{2\nu}$ cavitands **4**, **5**, or **6** were synthesized from tetrabromide **2**⁶ by coupling in K₂CO₃/DMF with resorcinol,

2-methylresorcinol, or methyl 3,5-dihydroxybenzoate in 17, 15%, 19% yields, respectively (Scheme 1). Cavitands 7 or

8 were synthesized from tetrathiol 3^7 by coupling in K_2CO_3/DMF with 1,2-dibromoethane or α,α' -dibromo-o-xylene in

[†] Soongsil University.

[‡] Sookmyung Women's University.

⁽¹⁾ Paek, K.; Ihm, C.; Ihm, H. Tetrahedron Lett. 1999, 40, 4697.

⁽²⁾ Paek, K.; Cho, J. Tetrahedron Lett. 2001, 42, 1927.

⁽³⁾ Pal, S.; Sankaran, N. B.; Samanta, A. Angew. Chem., Int. Ed. 2003, 42, 1741.

⁽⁴⁾ Wyndham, B. B.; Scott, W. G. J. Am. Chem. Soc. 1999, 121, 3551.

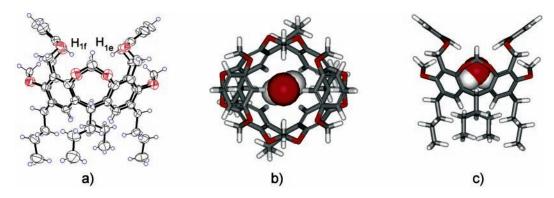


Figure 1. (a) X-ray crystal structure of cavitand 4 (solvent molecules are omitted for clarity. Structure shows 50% ellipsois probability). (b, c) Molecular mechanics-optimized structure of 4@H₂O (CFF95 Force-field by Cerius2) (b, top view; c, side view). Cavitand is represented as a bond framework while the H₂O molecule is rendered as a space-filling model.

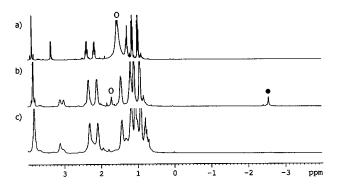
45 and 36% yields, respectively. These new C_{2v} cavitands have been fully characterized by NMR, FAB+ mass spectra, and elemental analyses.8

(5) Teresa, H.; Greg, H. Chem. Rev. 2002, 102, 2651.

The CPK molecular model study showed that these new $C_{2\nu}$ cavitands could not accommodate MeOH, EtOH, CH₃-CN, CH₃CHO, CH₃NO₂, CH₄, or NH₄⁺ but could accommodate H₂O due to the small cavity partially blocked by protons H_{1f} and H_{1e} of the bridging resorcinolic units (Figure

The water-binding properties were not verified by X-ray crystallographic study of a single crystal of 4, which was grown at room temperature by slow evaporation of mixed solution (CH₂Cl₂/toluene) (Figure 1a).

The complex formations were studied by ¹H NMR spectrometer from 25 °C to -70 °C in water-saturated CD₂-Cl₂ or CDCl₃. Cavitands **4–6** did not show any detectable complexing behavior for H₂O until −20 °C in CD₂Cl₂ or CDCl₃. For example, cavitand **6** showed only a free H₂O peak at 1.53 ppm in water-saturated CD₂Cl₂ at 25 °C (Figure 2a). When the temperature was deceased to -50 °C, a new signal appeared at -2.56 ppm (Figure 2b). The far upfield shifts of the complexed guest's peaks ($\Delta \delta = -4.09$) are typical to container hosts having aromatic shells. When an excess of D₂O was added at room temperature and the ¹H NMR spectrum was measured at below -50 °C, the complexed and free peaks of water disappeared due to the fast exchange between D2O and complexed H2O as well as free H₂O (Figure 2c). Cavitands 4 and 5 showed the similar water binding properties in water-saturated CD₂Cl₂ or CDCl₃, and the ratios of complexed water molecule to cavitands 4, **5**, and **6** at -50 °C are 0.24, 0.21, and 0.40, respectively. However, none of them complexed water in acetone- d_6 at low temperature.


(d, 2H, J = 8.0, cyclic inner OCH₂O), 4.55 (t, 2H, cyclic ArCH), 4.76 (d, 2H, J = 6.4, noncyclic inner OCH₂O), 5.23 (t, 2H, noncyclic ArCH), 5.76 (d, 2H, J = 8.0 cyclic outer OCH₂O), 5.86 (d, 2H, J = 6.8, noncyclic outer OCH_2O), 7.05 (s, 4H, ArH). For 8: mp > 300 °C dec; FAB+ MS m/z 1149.6 $(M^+, 100)$; ¹H NMR (CDCl₃, 400 MHz) δ 1.02–1.10 (m, 12H, CH₂-CH₂CH₃), 1.29–1.50 (m, 16H, CH₂CH₂CH₂CH₃), 2.20, 2.90 (q, 8H CH₂-CH₂CH₂-CH₃), 2.78, 2.94 (d, 8H, SCH₂ArCH₂S), 3.73, 3.82 (d, 8H, $ArCH_2S$), 4.28 (2H, J = 6.8, cyclic inner O CH_2O), 4.84 (m, 4H, cyclic outer OCH₂O+ noncyclic inner OCH₂O), 4.84 (t, 2H, cyclic ArCH), 4.93 (t, 2H, noncyclic ArCH), 6.08 (d, 2H, J = 7.6, noncyclic outer OCH₂O), 7.16 (s, 4H, ArH), 7.21, 7.52 (m, 8H, SCH₂ArCH₂S).

370 Org. Lett., Vol. 6, No. 3, 2004

^{(6) (}a) Kim, K.; Paek, K. Bull. Kor. Chem. Soc. 1993, 14, 658. (b) Sorrel, T. N.; Pigge, F. C. *J. Org. Chem.* **1993**, *58*, 784. (7) Bryant, J. A.; Blanda, M. T.; Vincenti, M.; Cram, D. J. *J. Am. Chem.*

Soc. 1991, 133, 2167.

⁽⁸⁾ For 4: mp > 300 °C dec. FAB+ MS m/z 973.1 (M⁺, 100); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 0.97, 1.13 \text{ (t, 12H, } CH_2CH_2CH_3), 1.27, 1.55 \text{ (m, 8H, }$ $CH_2CH_2CH_3$), 2.14, 2.35 (m, 8H $CH_2CH_2CH_3$), 3.31 (d, 2H, J = 7.2, cyclic inner OCH₂O), 4.34 (d, 4H, J = 12.0, inner ArCH₂O), 4.45 (d, 2H, J = 12.0) 8.0, noncyclic inner O CH_2O), 4.68 (t, 2H, cyclic ArCH), 4.91 (d, 2H, J =7.2 cyclic outer OCH₂O), 4.97 (s, 2H, resorcinol's H), 5.09 (t, 2H, noncyclic ArCH), 5.45 (d, 4H, J = 12.0, outer ArCH₂O), 5.98 (d, 2H, J = 8.0, noncyclic outer OC H_2 O), 6.84 (d of d, 4H, resorcinol's H), 7.19 (s, 4H, ArH), 7.36 (t, 2H, resorcinol's H); ¹³C NMR (CDCl3, 100 MHz) δ 14.51, 14.74 (CH₂CH₂CH₃), 21.26, 21.49 (CH₂CH₂CH₃), 30.35, 33.42 (CH₂CH₂-CH₃), 36.93, 37.09 (ArCH), 70.74 (ArCH₂O), 96.36 (cyclic OCH₂O), 102.57 (noncyclic OCH2O), 120.66, 125.04, 138.02, 139.96, 150.53, 155.84 (resorcin[4]aren's ArC), 11.20, 119.84, 132.96, 161.60 (resorcinol's ArC). Anal. Calcd for C₆₂H₆₄O₁₂: C, 74.06; H, 6.21. Found: C, 74.30; H, 6.19. For 5: mp > 310 °C dec; FAB+ MS m/z 1001.1 (M⁺, 100); ¹H NMR (CDCl₃, 400 MHz): δ 0.96, 1.13 (t, 12H, CH₂CH₂CH₃), 1.26, 1.55 (m, 14H, CH₂CH₂CH₃ + orcinol's CH3), 2.12, 2.34 (m, 8H CH₂CH₂CH₃), 3.40 (d, 2H, J = 7.2, cyclic inner OCH₂O), 4.32 (d, 4H, J = 12.1, inner ArCH₂O), 4.43 (d, 2H, J = 7.6, noncyclic inner OCH₂O), 4.68 (t, 2H, cyclic ArCH), 4.79 (s, 2H, γ to orcinol CH₃), 4.93 (d, 2H, J = 6.4 cyclic outer OCH₂O), 5.08 (t, 2H, noncyclic ArCH), 5.39 (d, 4H, J = 8.0, outer ArCH₂O), 5.96 (d, 2H, J = 8.0, noncyclic outer OCH₂O), 6.65 (s, 4H, ArH), 7.18 (s, 2H, α to orcinol CH₃); ^{13}C NMR (CDCl3, 100 MHz) δ 14.50, 14.71 (CH₂-CH₂CH₃), 21.26, 21.46 (CH₂CH₂CH₃), 21.76 (ArCH₃), 30.37, 33.42 (CH₂-CH₂CH₃), 36.91, 37.08 (ArCH), 70.53 (ArCH₂O), 96.45 (cyclic OCH₂O), 102.61 (noncyclic OCH₂O), 120.59, 125.18, 138.08, 143.49, 150.52, 155.80 (resorcin[4]arene's ArC), 116.03, 120.76, 139.88, 161.25 (ArCOOH's ArC). Anal. Calcd for $C_{62}H_{64}O_{12}$: C, 74.38; H, 6.44. Found: C, 74.06; H, 6.35. For **6**: mp >290 °C dec; FAB+ MS m/z 1089.1 (M⁺, 100); ¹H NMR (CDCl₃, 400 MHz): δ 0.96, 1.13 (t, 12H, CH₂CH₂CH₃), 1.28, 1.56 (m, 8H, $CH_2CH_2CH_3$), 2.14, 2.35 (m, 8H $CH_2CH_2CH_3$), 3.40 (d, 2H, J=7.2, cyclic inner OCH_2O), 3.90 (s, 6H, $COOCH_3$), 4.39 (m, 6H, inner $ArCH_2O$) + noncyclic inner OCH₂O), 4.69 (t, 2H, cyclic ArCH), 4.95 (d, 2H, J =6.8 cyclic outer OCH₂O), 5.10 (t, 2H, noncyclic ArCH), 5.14 (s, 2H, γ to $COOCH_3$), 5.49 (d, 4H, J = 12.0, outer $ArCH_2O$), 5.98 (d, 2H, J = 8.0, noncyclic outer OC H_2 O), 7.12 (s, 4H, ArH), 7.50 (s, 4H, α to COOCH₃); 13 C NMR (CDCl₃, 100 MHz) δ 14.46, 14.68 (CH₂CH₂CH₃), 21.21, 21.46 (CH₂CH₂CH₃), 30.27, 30.33 (CH₂CH₂CH₃), 36.87, 37.11 (ArCH), 52.88 (COOCH₃), 70.82 (ArCH₂O), 96.43 (cyclic OCH₂O), 102.47 (noncyclic OCH₂O), 120.78, 124.64, 134.95, 138.23, 150.44, 155.82 (resorcin[4]arene's ArC), 120.94, 123.17, 139.99, 161.37 (ArCOOH's ArC), 165.99 (C=O). Anal. Calcd for $C_{64}H_{64}O_{14}$: C, 70.57; H, 5.92. Found: C, 70.33; H, 5.87. For 7: mp > 280 °C dec; FAB+ MS m/z 942 (M⁺, 100); ¹H NMR (CDCl₃, 400 MHz) δ 0.91, 1.16 (t, 12H, CH₂CH₂CH₃), 1.27, 1.67 (m, 8H, CH₂CH₂-CH₃), 1.58 (s, 8H, SCH₂CH₂S), 2.04, 2.36 (m, 8H, CH₂CH₂CH₃), 3.58 (d, 4H, J = 14.0, inner ArCH₂S), 3.84 (d, 4H, J = 14.0, outer ArCH₂S), 4.19

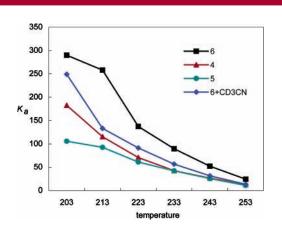


Figure 2. ¹H NMR (400 MHz, H₂O saturated CD₂Cl₂) spectra: (a) **6** at 25 °C; (b) **6** at -50 °C; (c) **6** + D₂O at -50 °C. [**6**] = 9 mM. Symbols designate the protons of (\bigcirc) free H₂O, (\blacksquare) complex H₂O.

Cavitands 1, 7, and 8 did not show the binding ability for H_2O or any other small molecules from +25 to -70 °C. The fully opened gate (cavitand 1) or the partially closed flexible gate (ethylenedioxy for cavitand 7 or 1,3-bis(thiomethylene)benzene for 8) cannot impose a substantial energy barrier against the fast release of water. Instead, the small cavities of cavitands 4-6 were blocked by the inner protons such as H_{1f} and H_{1e} of cavitand 4, which makes their cavities complementary to water.

When the temperature decreased to -70 °C, the intensity of the free H₂O peak was decreased due to water freezing. On the contrary, the peak intensity of complexed water was unchanged or even slightly increased. This interesting phenomenon implies that the energy barrier for decomplexation of H₂O is substantially high compared to that for complexation at -70 °C due to the solvophobic driving force. Therefore, the binding constants (K_a) were gradually increased as the temperature decreased.

The distinct peaks of free and complex guests enable the direct calculation of K_a as shown in Figure 3. Generally, K_a values decreased in this order: cavitand $\mathbf{6} > \text{cavitand } \mathbf{4} >$

Figure 3. Binding constants (K_a) of cavitands **4–6** at various temperatures in water saturated CD₂Cl₂.

Table 1. Thermodynamic Parameters for Cavitand@H₂O at −50 °C in Water-Saturated CD₂Cl₂^a

cavitand	$K_{\rm a} ({ m M}^{-1})^b$	$-\Delta G^{\circ}$ (kcal mol ⁻¹)	ΔH° (kcal mol $^{-1}$)	ΔS° (cal mol $^{-1}$ K $^{-1}$)
4	71	1.9	-2.3	-128
5	61	1.8	-2.1	-128
6	137	2.2	-2.5	-110
$\boldsymbol{6} + CD_3CN$	91	2.0	-2.6	-170

 $[^]a$ 400-MHz 1 H NMR spectrometer was used. b Estimated error $\pm 10\%$.

cavitand **5**. Probably the polar ester group could induce the complexation of polar guest better. A COOCH $_3$ group of host **6** increased the hydrophilicity to the gate of the cavity, and H $_2$ O molecules could be easily gathered and enter through the gate better than those of host **4** or **5**.

As the temperature decreased, the complexed H_2O molecule stays in the cavity. When CD_3CN was added to the solution of cavitand 6 in H_2O saturated CD_2Cl_2 , the K_a value was slightly decreased due to the increased polarity of solution, which lessons the solvophobic interaction.

A molecular mechanics calculation using the Cerius2 program with the CFF95 force field was carried out for cavitand 4 by geometry optimization of the water-emitting process through the upper and lower gates. 9,10 As the complexed water molecule approached the upper or lower gate, the total stabilized energy gradually increased. The maximum stabilized energy on upper or lower gate was calculated to be 123 and 129 kcal/mol, respectively, 11 which implies that water-emitting through the upper gate is favored. Entering through the upper gate is similarly favored, which is consistent with the large effect on K_a of the functional groups on the resorcinolic unit (x of cavitands 4, 5, and 6).

Table 1 shows the thermodynamic parameters for complexation obtained from the Van't Hoff equation by variable-temperature 1H NMR experiments. All of these complexing processes was enthalpically favored and entropically disfavored. Generally, host—guest complexations of container hosts in non-hydroxylic media are enthalpically favored and entropically disfavored, with ΔH ° values ranging from -3 to -8 kcal mol^{-1} and ΔS ° from -12 to -18 cal mol^{-1} K $^{-1}$. In these water-complexing processes, averaged ΔH ° and ΔS ° values are -2.3 kcal mol^{-1} and -128 cal mol^{-1} K $^{-1}$, respectively. This entropically disfavored process may be due to the filling of empty cavity by free $\mathrm{H}_2\mathrm{O}$.

Org. Lett., Vol. 6, No. 3, 2004

⁽⁹⁾ Dinur, U.; Hagler, A. T. In *New Approaches to Empirical Force Field*; Lipkowitz, K. B., Boyd, D. B., Eds.; Reviews of Computational Chemistry; Verlag Chemie Publishers: New York, 1991; Vol. 2, Chapter 4.

⁽¹⁰⁾ Maple, J. R.; Dinur, U.; Hagler, A. T. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5350.

⁽¹¹⁾ Computational results obtained using software programs from Molecular Simulations Inc. Dynamics calculations performed with the Discover program using the CFF91 force-field, ab initio calculations performed with the Dmol program and graphical displays generated with the Cerius2 molecular modeling system.

⁽¹²⁾ Cram, D. J.; Cram, J. M. *Container Molecules and Their Guests*; Stoddart, J. F., Eds.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, UK, 1994; Vol. 4, 127.

The attempted complexations of NH₄⁺, MeOH, EtOH, CH₃CN, acetic acid, or DMA in dry CD₂Cl₂ or CDCl₃ at low temperature failed even under an excess of these potential guests.

In conclusion, new C_{2v} container hosts **4–6** showed the specific binding properties for H_2O in CD_2Cl_2 or $CDCl_3$ at low temperature due to their complementarity to water as well as the solvophobic interaction of water. More refined manipulations on these cavitands for specific water binding at room temperature are ongoing.

Acknowledgment. We thank the Ministry of Science and Technology, Korea (No. M1-0213-03-0005), for financial support.

Supporting Information Available: Details of crystal structure determination solution and refinement (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL036206X

372 Org. Lett., Vol. 6, No. 3, 2004